

Solid State

By Lou Garner

SIMPLE STOPWATCH SPLITS SECONDS!

LTHOUGH electronics may be one of your major hobbies, if you're a typical reader, chances are you're interested in a number of other things as well . . . track, perhaps, or wrestling, boxing, swimming, skiing, sailing, horse racing, skating, skeet, target shooting, rally driving, archery, chess, photography or chemistry. In many of these activities, it may be desirable to time an event or series of events with reasonable accuracy and, for this, a stopwatch is a virtual necessity. Fortunately, there's a wide choice of commercial instruments available for nearly all timing applications, from chemical reactions to photographic exposures, from sports matches to the single lap of a race, and from a chess move to the driving (or sailing) coverage of a measured distance. You can choose a conventional mechanical hand-wound type or a sophisticated digital electronic unit at prices ranging from less than fifty to more than two hundred dollars, depending on the accuracy and operational features needed for your application. On the other hand, if you prefer to "roll your own," you can assemble a versatile multi-function digital stopwatch at modest cost and with minimum effort by using an IC introduced late last year by Intersil, Inc. (10900 N. Tantau Ave., Cupertino, CA 95014). The resulting instrument features a timing range of up to 59 minutes 59.99 seconds in onehundredth of a second increments, a low-battery indicator, crystal control, and two operating modes, yet requires, in addition to the IC, only a six-digit LED display, four spst

switches, a quartz crystal, a small trimmer capacitor, and three penlight cells, plus a case and customary hardware.

Designated type ICM 7205, Intersil's stopwatch IC is a single chip CMOS device designed to interface directly with a six-digit/seven-segment common-cathode LED readout, and is capable of furnishing a multiplexed drive current of up to 13-mA per segment with a nominal 3.8-volt dc source. It is suitable, however, for use on 2-to 5-volt dc supplies and is fully protected internally against damage from static charges, thus eliminating the need for special handling and wiring precautions. The unit has a maximum power dissipation rating of 0.75 watts and a specified operating temperature range of from -20° C to $+70^{\circ}$ C. The device contains an integral oscillator, high- and lowfrequency dividers, a multiplex generator, control logic, counters, a decoder, digit and segment drivers, and a low-battery sensor/indicator driver. In operation, the circuit divides the 3.2768-MHz signal generated by the crystal controlled oscillator by 215 to obtain 100 Hz, which is then fed to the fractional seconds, seconds and minute counters. An intermediate frequency is used to develop a onesixth duty cycle 1.07-MHz signal for multiplexing the display drivers. The blanking logic provides leading zero blanking for seconds and minutes independently of the clock.

Described in Intersil's 6-page technical bulletin for the ICM 7205, the stopwatch schematic shown in Fig. 1 is

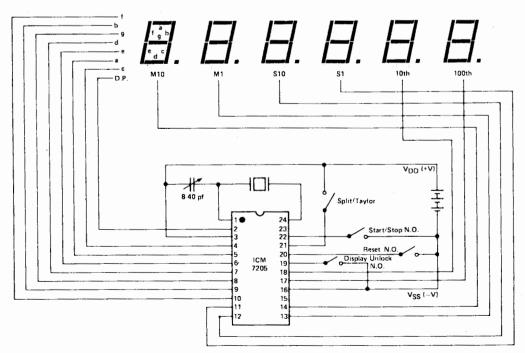
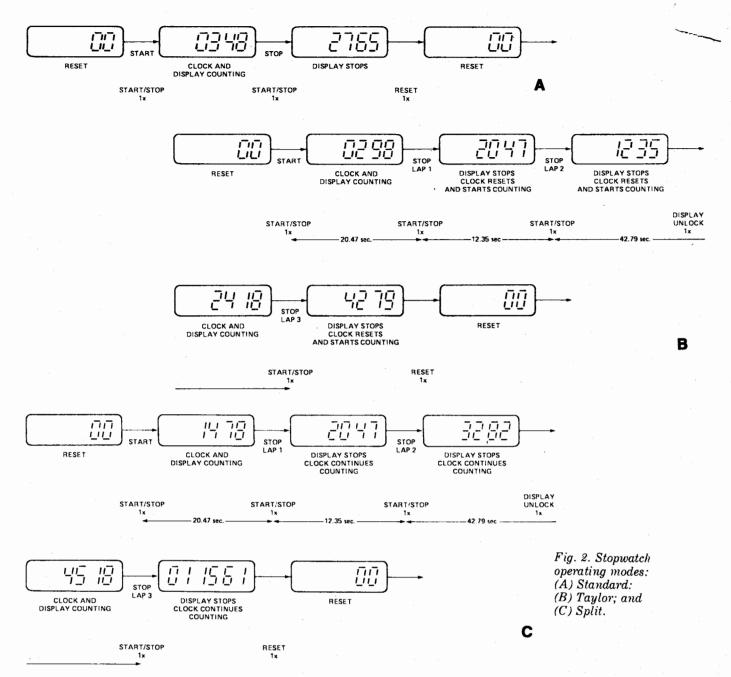



Fig. 1. Circuit for stopwatch using the 7205 chip.

complete except for an optional "on-off" power switch. If used, this may be a spst unit connected in series with either power supply lead. The power source consists of three series-connected AA cells or equivalent rechargeable NiCd units. Since standard components are specified, most of these should be readily available through local dealers. However, depending on the individual's location, it may be necessary to order the IC and crystal through one of the larger mail-order distributors. The manufacturer specifies that the quartz crystal used to control the oscillator's frequency should be a 3.2768-MHz unit with an $\rm R_{\rm S}$ of 50 ohms and a load capacitance of 15 pF. If a different crystal is used, it may be necessary to change the trimmer capacitor's value (shown as 8 to 40 pF) to achieve optimum performance.

With neither parts layout nor lead dress critical, the individual builder may use either PC or perf board construction techniques when duplicating the circuit, as preferred. Good wiring practice should be followed, of course. For best performance, the spst START/STOP switch should be a high-quality, normally open pushbutton type with low

"bounce" (less than 15 ms) characteristics. After assembly and checkout, the oscillator trimmer should be adjusted for precise operation, checking the unit against an accurate standard, if available.

In practice, switching the stopwatch "on" will reset the circuits and display "00" in the fractional seconds position, with all other digits blanked. This display always indicates that the stopwatch is ready for operation. The instrument may be used in either of two modes in addition to that of a standard stopwatch. All three operational modes are illustrated graphically in Fig. 2. For timing a single event, the START/STOP and RESET switches are used. As shown in Fig. 2(A), depressing the START/STOP switch starts the clock and display counting. At the end of the timed event, depressing the START/STOP switch stops the display, permitting a readout of the time interval. Initially, only fractions of seconds are displayed, with seconds shown after one second and, finally, minutes after the first minute, providing a full display. Since the maximum range is 59 minutes 59.99 seconds, the user must remember the number of hours if the timed event exceeds an hour. Leading zeros are not blanked after the first hour. Once the event is timed, the instrument can be reset for another measurement by operating the RESET switch. The TAYLOR (or sequential) mode is used when timing a series of rapidly occurring events where the individual time for each event is of immediate interest, rather than the total time. Here, the SPLIT/TAYLOR switch (Fig. 1) is left open and the instrument is controlled using the START/STOP, DISPLAY UNLOCK. and RESET switches. As depicted in Fig. 2(B), depressing the START/STOP switch initially starts both the clock and display counting. At the end of the first event, depressing the START/STOP switch stops the display and resets the clock, which starts counting again. The display remains stationary after the first interval, showing the last previous time, until the START/STOP switch is actuated, which causes the display to show the next interval. Operating the DISPLAY UNLOCK switch will permit the display to show the running clock at any time. Upon completion of the timing tests, the stopwatch is reset by actuating the RESET switch. Finally. for those events where the user is interested in the cumulative time intervals for a series of events, the stopwatch can be operated in the SPLIT mode. Here, the SPLIT/TAYLOR switch is closed. Afterwards, depressing the START/STOP switch starts the clock and display counting, as shown in Fig. 2(C). At the end of the first event, the START/STOP switch stops the display but permits the clock to keep counting. Thereafter, the cumulative time can be read after each succeeding event by operating the START/STOP switch. Whenever desired, the DISPLAY UNLOCK switch may be used to let the display "catch up" with the running clock. At the end of the series of events, the RESET switch reestablishes initial starting conditions but, of course, this control can be used at any time.

The optional on-chip low battery indicator (LBI) is intended for use with a separate LED or with the decimal points of the digital readout. Its output (pin 2) is a p-channel transistor of approximately half the size of one of the segment drivers. The circuit is designed to maintain a voltage difference between the LBI trigger level and the minimum operating voltage. Thus, the lower the LBI trigger voltage, the lower the minimum operating voltage. In practice, this means that the stopwatch will provide at least 15 minutes of accurate timekeeping after the LBI turns on, assuming that the power pack consists of three size AA cells.